Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338921

RESUMO

Bipolar disorder (BD) is a severe and common chronic mental illness characterized by recurrent mood swings between depression and mania. The biological basis of the disease is poorly understood, and its treatment is unsatisfactory. Na+, K+-ATPase is a major plasma membrane transporter and signal transducer. The catalytic α subunit of this enzyme is the binding site for cardiac steroids. Three α isoforms of the Na+, K+-ATPase are present in the brain. Previous studies have supported the involvement of the Na+, K+-ATPase and endogenous cardiac steroids (ECS) in the etiology of BD. Decreased brain ECS has been found to elicit anti-manic and anti-depressive-like behaviors in mice and rats. However, the identity of the specific α isoform involved in these behavioral effects is unknown. Here, we demonstrated that decreasing ECS through intracerebroventricular (i.c.v.) administration of anti-ouabain antibodies (anti-Ou-Ab) decreased the activity of α1+/- mice in forced swimming tests but did not change the activity in wild type (wt) mice. This treatment also affected exploratory and anxiety behaviors in α1+/- but not wt mice, as measured in open field tests. The i.c.v. administration of anti-Ou-Ab decreased brain ECS and increased brain Na+, K+-ATPase activity in wt and α1+/- mice. The serum ECS was lower in α1+/- than wt mice. In addition, a study in human participants demonstrated that serum ECS significantly decreased after treatment. These results suggest that the Na+, K+-ATPase α1 isoform is involved in depressive- and manic-like behaviors and support that the Na+, K+-ATPase/ECS system participates in the etiology of BD.


Assuntos
Depressão , ATPase Trocadora de Sódio-Potássio , Humanos , Camundongos , Ratos , Animais , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Ouabaína/metabolismo , Isoformas de Proteínas/metabolismo , Esteroides
2.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430373

RESUMO

Bipolar disorder (BD) is a severe and common chronic mental illness. The biological basis of the disease is poorly understood and its treatment is unsatisfactory. Our previous studies supported the notion that alterations in Na+, K+-ATPase activity were involved in the etiology of BD. As various chemical elements inhibit Na+, K+-ATPase, we determined the concentration of 26 elements in the serum of BD patients before and after treatment and in postmortem brain samples from BD patients, and compared them with matched controls. The only element that was reduced significantly in the serum following treatment was vanadium (V). Furthermore, the concentration of V was significantly lower in the pre-frontal cortex of BD patients compared with that of the controls. Intracerebroventricular administration of V in mice elicited anxiolytic and depressive activities, concomitantly inhibited brain Na+, K+-ATPase activity, and increased extracellular signal-regulated kinase phosphorylation. A hypothesis associating V with BD was set forth decades ago but eventually faded out. Our results are in accord with the hypothesis and advocate for a thorough examination of the possible involvement of chemical elements, V in particular, in BD.


Assuntos
Transtorno Bipolar , Animais , Camundongos , Transtorno Bipolar/tratamento farmacológico , Vanádio/farmacologia , Encéfalo , Lobo Frontal , Adenosina Trifosfatases
3.
Int J Mol Sci ; 23(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35409366

RESUMO

Bufalin and other cardiac steroids (CS) have been used for centuries for the treatment of congestive heart failure, arrhythmias, and other maladies. However, toxicity and the small therapeutic window of this family of steroids limit their use. Therefore, attempts to synthesize a potent, but less toxic, CS are of major importance. In the present study, two novel bufalin derivatives were synthesized and some of their pharmacological properties were characterized. The reaction of bufalin with Ishikawa's reagent resulted in the production of two novel bufalin derivatives: bufalin 2,3-ene and bufalin 3,4-ene. The compounds were purified with TLC and HPLC and their structure was verified with UV, NMR, and MS analyses. The biological activities of these compounds were evaluated by testing their ability to inhibit the Na+, K+-ATPase activity of the brain microsomal fraction to induce cytotoxic activity against the NCI-60 human tumor cell line panel and non-cancer human cells, and to increase the force of contraction of quail embryonic heart muscle cells in culture. The two steroids exhibited biological activities similar to those of other CS in the tested experimental systems, but with reduced cytotoxicity, advocating their development as drugs for the treatment of heart failure and arrhythmias.


Assuntos
Bufanolídeos , Ouabaína , Arritmias Cardíacas/tratamento farmacológico , Bufanolídeos/metabolismo , Bufanolídeos/farmacologia , Humanos , Microssomos/metabolismo , Ouabaína/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35163766

RESUMO

Bipolar disorder (BD) is a severe psychiatric illness with a poor prognosis and problematic, suboptimal, treatments. Treatments, borne of an understanding of the pathoetiologic mechanisms, need to be developed in order to improve outcomes. Dysregulation of cationic homeostasis is the most reproducible aspect of BD pathophysiology. Correction of ionic balance is the universal mechanism of action of all mood stabilizing medications. Endogenous sodium pump modulators (collectively known as endogenous cardiac steroids, ECS) are steroids which are synthesized in and released from the adrenal gland and brain. These compounds, by activating or inhibiting Na+, K+-ATPase activity and activating intracellular signaling cascades, have numerous effects on cell survival, vascular tone homeostasis, inflammation, and neuronal activity. For the past twenty years we have addressed the hypothesis that the Na+, K+-ATPase-ECS system may be involved in the etiology of BD. This is a focused review that presents a comprehensive model pertaining to the role of ECS in the etiology of BD. We propose that alterations in ECS metabolism in the brain cause numerous biochemical changes that underlie brain dysfunction and mood symptoms. This is based on both animal models and translational human results. There are data that demonstrate that excess ECS induce abnormal mood and activity in animals, while a specific removal of ECS with antibodies normalizes mood. There are also data indicating that circulating levels of ECS are lower in manic individuals, and that patients with BD are unable to upregulate synthesis of ECS under conditions that increase their elaboration in non-psychiatric controls. There is strong evidence for the involvement of ion dysregulation and ECS function in bipolar illness. Additional research is required to fully characterize these abnormalities and define future clinical directions.


Assuntos
Transtorno Bipolar/metabolismo , Bombas de Íon/metabolismo , Esteroides/sangue , Animais , Transtorno Bipolar/psicologia , Encéfalo/metabolismo , Regulação para Baixo , Humanos , Transdução de Sinais , Esteroides/metabolismo
5.
Int J Mol Sci ; 21(16)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824628

RESUMO

Bipolar disorder is a chronic multifactorial psychiatric illness that affects the mood, cognition, and functioning of about 1-2% of the world's population. Its biological basis is unknown, and its treatment is unsatisfactory. The α1, α2, and α3 isoforms of the Na+, K+-ATPase, an essential membrane transporter, are vital for neuronal and glial function. The enzyme and its regulators, endogenous cardiac steroids like ouabain and marinobufagenin, are implicated in neuropsychiatric disorders, bipolar disorder in particular. Here, we address the hypothesis that the α isoforms of the Na+, K+-ATPase and its regulators are altered in the prefrontal cortex of bipolar disease patients. The α isoforms were determined by Western blot and ouabain and marinobufagenin by specific and sensitive immunoassays. We found that the α2 and α3 isoforms were significantly higher and marinobufagenin levels were significantly lower in the prefrontal cortex of the bipolar disease patients compared with those in the control. A positive correlation was found between the levels of the three α isoforms in all samples and between the α1 isoform and ouabain levels in the controls. These results are in accordance with the notion that the Na+, K+-ATPase-endogenous cardiac steroids system is involved in bipolar disease and suggest that it may be used as a target for drug development.


Assuntos
Transtorno Bipolar/metabolismo , Bufanolídeos/metabolismo , Ouabaína/metabolismo , Córtex Pré-Frontal/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Adulto , Transtorno Bipolar/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
6.
Cell Rep ; 27(3): 676-684.e6, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995466

RESUMO

Behavioral responses can be classified as innate or learned and are often mediated by distinct neuronal pathways. In many animals, chemical cues are crucial for directing behaviors, and multiple chemosensory subsystems serve this purpose. The major subsystems in vertebrates are the main olfactory system (MOS) and the vomeronasal system (VNS). While the MOS has well-documented associative capabilities, the VNS is known for its role in mediating innate responses to sensory cues with clear ethological significance. However, it remains unknown whether the VNS can map arbitrary sensory activation to novel behavioral outputs. To address this question, we used several optogenetic strategies for selective vomeronasal activation and tested whether mice could associate stimulation patterns with particular reward locations. Our experiments indicate that mice can, indeed, exploit VNS activity to direct novel behavioral responses, implying that the VNS holds a substantial capacity for redirecting and adapting behavioral responses to given stimulation patterns.


Assuntos
Aprendizagem , Órgão Vomeronasal/metabolismo , Animais , Comportamento Animal , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Bulbo Olfatório/metabolismo , Estimulação Luminosa , Células Receptoras Sensoriais/metabolismo , Olfato
7.
Int J Mol Sci ; 19(8)2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087257

RESUMO

Bipolar disorder (BD) is a severe and common chronic mental illness characterized by recurrent mood swings between depression and mania. The biological basis of the disease is poorly understood and its treatment is unsatisfactory. Although in past decades the "monoamine hypothesis" has dominated our understanding of both the pathophysiology of depressive disorders and the action of pharmacological treatments, recent studies focus on the involvement of additional neurotransmitters/neuromodulators systems and cellular processes in BD. Here, evidence for the participation of Na⁺, K⁺-ATPase and its endogenous regulators, the endogenous cardiac steroids (ECS), in the etiology of BD is reviewed. Proof for the involvement of brain Na⁺, K⁺-ATPase and ECS in behavior is summarized and it is hypothesized that ECS-Na⁺, K⁺-ATPase-induced activation of intracellular signaling participates in the mechanisms underlying BD. We propose that the activation of ERK, AKT, and NFκB, resulting from ECS-Na⁺, K⁺-ATPase interaction, modifies neuronal activity and neurotransmission which, in turn, participate in the regulation of behavior and BD. These observations suggest Na⁺, K⁺-ATPase-mediated signaling is a potential target for drug development for the treatment of BD.


Assuntos
Transtorno Bipolar/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Transtorno Bipolar/etiologia , Transtorno Bipolar/patologia , Humanos , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esteroides/metabolismo
8.
J Neurosci Methods ; 285: 19-32, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28476589

RESUMO

BACKGROUND: Achieving controlled stimulus delivery is a major challenge in the physiological analysis of the vomeronasal system (VNS). NEW METHOD: We provide a comprehensive description of a setup allowing controlled stimulus delivery into the vomeronasal organ (VNO) of anesthetized mice. VNO suction is achieved via electrical stimulation of the sympathetic nerve trunk (SNT) using cuff electrodes, followed by flushing of the nasal cavity. Successful application of this methodology depends on several aspects including the surgical preparation, fabrication of cuff electrodes, experimental setup modifications, and the stimulus delivery and flushing. Here, we describe all these aspects in sufficient detail to allow other researchers to readily adopt it. We also present a custom written MATLAB based software with a graphical user interface that controls all aspects of the actual experiment, including trial sequencing, hardware control, and data logging. RESULTS: The method allows measurement of stimulus evoked sensory responses in brain regions that receive vomeronasal inputs. An experienced investigator can complete the entire surgical procedure within thirty minutes. COMPARISON WITH EXISTING METHODS: This is the only approach that allows repeated and controlled stimulus delivery to the intact VNO, employing the natural mode of stimulus uptake. The approach is economical with respect to stimuli, requiring stimulus volumes as low as 1-2µl. CONCLUSIONS: This comprehensive description will allow other investigators to adapt this setup to their own experimental needs and can thus promote our physiological understanding of this fascinating chemosensory system. With minor changes it can also be adapted for other rodent species.


Assuntos
Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Neurônios/fisiologia , Software , Técnicas Estereotáxicas/instrumentação , Órgão Vomeronasal , Potenciais de Ação/fisiologia , Animais , Camundongos , Órgão Vomeronasal/citologia , Órgão Vomeronasal/fisiologia , Órgão Vomeronasal/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...